CYCLOADDITIONS OF N-BENZYLIDENEAMINOACETONITRILE AS A SYNTHETIC EQUIVALENT OF METHANENITRILE BENZYLIDE

Otohiko TSUGE,* Shuji KANEMASA, Kiyotaka YOROZU, and Kazunori UENO
Research Institute of Industrial Science, and Department
of Molecular Science and Technology, Interdisciplinary
Graduate School of Engineering Sciences, Kyushu University,
Kasugakoen, Kasuga 816

N-Benzylideneaminoacetonitrile is a synthetic equivalent of methanenitrile benzylide via a cycloaddition and elimination sequence. Its reactions with olefinic dipolarophiles provide stereochemically defined 1- or 2-pyrrolines.

Efficiency of an N-protonated azomethine ylide with a leaving group in heterocyclic synthesis has been recently reported. Although an N-protonated azomethine ylide is a tautomeric isomer of imine, such tautomerism is in general energetically disfavored. Only when an α -hydrogen in the N-alkyl substituent of imine is highly acidic, the N-protonated azomethine ylide structure becomes important. α -Imino esters are the only investigated example. α

As iminoacetonitriles bear an equally acidic α -hydrogen, they would serve as N-protonated azomethine ylides of cyano-stabilized type. Through their cycloadditions and the subsequent elimination of hydrogen cyanide, ³⁾ these imines could be synthetic equivalents of methanenitrile methylides which are otherwise hardly accessible. ⁴⁾

The present communication describes the stereoselective cycloadditions of N-

PhCH=NCH₂CN +
$$\frac{1}{R}$$
 Ph $\frac{H}{R}$ CN Ph $\frac{H}{R}$ CN $\frac{H}{R}$ Ph $\frac{H}{R}$

Scheme 1.

1602 Chemistry Letters, 1985

benzylideneaminoacetonitrile $\underline{1}$ to olefinic dipolarophiles leading to stereochemically defined 1- or 2-pyrrolines after the elimination of hydrogen cyanide.

Heating an equimolar mixture of $\underline{1}$ and N-methylmaleimide under reflux in toluene gave a quantitative yield of cycloadduct $\underline{2}$ as a single isomer (Scheme 1 and Table 1). On the other hand, the same reaction under reflux in a rather polar solvent (MeCN) or in the presence of a catalytic amount of acetic acid at room temperature produced another cycloadduct $\underline{3}$ along with $\underline{2}$ as listed in Table 1. The stereostructures of $\underline{2}$ and $\underline{3}$ were determined as 3a,4-trans-6,6a-cis and 3a,4-cis-6,6a-cis cycloadducts, respectively, on the basis of the 1 H-NMR spectra in which the signal assignment was based on the corresponding cycloadducts obtained from the reaction of a monodeuterio derivative 1-d of the imine 1.5)

The selective formation of $\underline{2}$ has resulted from the exclusive participation of the anti ylide \underline{A} in an endo fashion \underline{C} , while the endo approach \underline{D} of the syn ylide \underline{B} has coincided under a polar environment forming the stereoisomeric cycloadduct $\underline{3}$. A similar reaction, however, with N-(p-nitrophenyl)maleimide gave the stereoselective cycloadduct $\underline{4}$ regardless of the reaction conditions.

$$\frac{3}{3a} \xrightarrow{A} 6a$$

$$\frac{2}{Me} \xrightarrow{BBU} \xrightarrow{Ph} N \xrightarrow{N} 0$$

$$\frac{6}{Me} \xrightarrow{T} R = Me$$

$$\frac{6}{Me} \xrightarrow{B} R = p - NO_2 C_6 H_4$$

Scheme 2.

Table 1. Cycloadditions of 1 to Olefinic Dipolarophiles

Olefin ^{a)}		Reaction co	ondition	s ^{b)}	Product	Yield/% ^{c)}	Isomer ratio ^{d)}
	Solvent	Catalyst	Temp	Time/h			
MMI	toluene	-	reflux	6.5	<u>2</u>	100	
	MeCN	-	reflux	62	<u>2+3</u>	100	$\underline{2:3}=3:1$
	MeCN	5 mo1%	rt	24	<u>2+3</u>	100	$\underline{2:3}=1:1$
NPMI	toluene	-	reflux	16	<u>4</u>	100	
	MeCN	10 mol%	rt	30	<u>4</u>	100	
DMM	toluene	-	reflux	27	<u>9</u>	66	
DMF	toluene	_	reflux	24	<u>10+11</u>	86	$\underline{10}:\underline{11}=1:1.9$
	MeCN	5 mol%	rt	38	<u>10+11</u>	72	10:11 = 2.2:1
MA	neat	-	reflux	12	<u>13-16</u>	100	<u>13+14:15+16</u> = 3:2

a) MMI: N-methylmaleimide; NPMI: N-(p-nitrophenyl)maleimide; DMM: dimethyl maleate; DMF: dimethyl fumarate; MA: methyl acrylate. b) Acetic acid was used as a catalyst. c) Isolated yields. d) Determined by ¹H-NMR spectroscopy.

On heating $\underline{3}$ in xylene, the elimination of hydrogen cyanide occurred with the retention of stereochemistry giving a fused 1-pyrroline $\underline{5}$, whereas $\underline{2}$ was recovered unchanged under the same conditions (Scheme 2 and Table 2). In the presence of a catalytic amount of DBU, $\underline{2}$ underwent the elimination affording the stereochemically inverted 1-pyrroline $\underline{6}$ and the double bond-migrated isomer $\underline{7}$, the former being converted into the latter in a quantitative yield by the prolonged heating in the presence of DBU.

Scheme 3.

The reaction of $\underline{1}$ with dimethyl maleate produced a single isomer of 2-pyrroline $\underline{9}$ which was presumably derived via the stereoselective cycloadduct \underline{E} (Scheme 3). On the other hand, the reaction with dimethyl fumarate gave a mixture of two isomeric cycloadducts $\underline{10}$ and $\underline{11}$, the isomer ratio depending upon the reaction conditions (Table 1). Only $\underline{10}$ succeeded in the thermal elimination into $\underline{9}$ with the retention of stereochemistry. The DBU-catalyzed elimination of $\underline{11}$ led to only the inverted 2-pyrroline 12 as a stereoisomer of 9.

Although all the above cycloadditions showed high stereoselectivity between the phenyl and one of the two electron-withdrawing substituents, all of four possible stereoisomers $\underline{13}$ - $\underline{16}$ of the regionelective cycloadduct were obtained in the re-

Table 2. Elimination of hydrogen Cyanide from the Cycloadducts							
Cycloadduct	Rea	ction con	ditions	Product (yield/%)b)			
	Solvent	Catalyst	Temp	Time/h			
<u>3</u>	xylene		reflux	19	<u>5</u> (60) <u>3</u> (40)		
<u>2</u>	xylene	DBU	reflux	7	<u>6</u> (19) <u>7</u> (68)		
<u>4</u>	xylene	DBU	reflux	7	<u>8</u> (83)		
<u>10</u>	xylene	-	reflux	9	9 (42) $10 (58)$		
11	toluene	DBU	reflux	12.5	<u>12</u> (100)		
<u>13+14</u>	toluene	DBU	reflux	17	<u>17</u> (82)		
<u>15+16</u>	toluene	DBU	reflux	18	<u>18</u> (81)		

Table 2. Elimination of Hydrogen Cyanide from the Cycloadducts

a) Catalytic amount of DBU was used. b) Isolated yields.

1604 Chemistry Letters, 1985

action of $\underline{1}$ with methyl acrylate (Scheme 4). The separated mixtures of stereoisomers, the 2,3-cis $\underline{13+14}$ and 2,3-trans isomers $\underline{15+16}$, were effectively converted in a stereospecific manner into the cis $\underline{17}$ and trans 1-pyrroline $\underline{18}$, respectively, by heating with DBU (Table 2). Both the pyrrolines $\underline{17}$ and $\underline{18}$ could be further dehydrogenated with DDQ into the same compound, methyl 2-phenylpyrrole-3-carboxylate.

Scheme 4.

References

- 1) O. Tsuge, S. Kanemasa, T. Yamada, and K. Matsuda, Heterocycles, <u>23</u>, in press; O. Tsuge, S. Kanemasa, and K. Matsuda, Chem. Lett., <u>1985</u>, 1411.
- R. Grigg and J. Kemp, J. Chem. Soc., Chem. Commun., <u>1977</u>, 125 and <u>1978</u>, 109; O. Tsuge, K. Ueno, and K. Oe, Chem. Lett., <u>1979</u>, 1407; R. Grigg, Bull. Soc. Chim. Belg., <u>93</u>, 593 (1984) and references cited therein.
- 3) O. Tsuge and K. Ueno, Heterocycles, 19, 1411 (1982) and 20, 2133 (1983).
- 4) Although 2-unsubstituted 1-azirines are known, their photolysis aiming at the generation of methanenitrile methylides has not been reported so far.
- 4) All new compounds reported herein were fully characterized on the basis of spectral data as well as elemental analyses. Two examples are as follows:

2: colorless prisms (benzene-hexane); mp 152-153 °C; IR (KBr) 3300, 2220, and 1690 cm $^{-1}$; 1 H-NMR (CDCl $_{3}$) δ =2.40 (1H, br. s, NH), 2.85 (3H, s, NMe), 3.45 (1H, t, 1 $_{6a-3a}=^{1}$ $_{6a-6}=^{8.0}$ Hz, 6a-H), 3.54 (1H, d, 1 $_{3a-6a}=^{8.0}$ Hz, 3a-H), 4.66 (1H, s, 4-H), 4.78 (1H, d, 1 $_{6-6a}=^{8.0}$ Hz, 6-H), and 7.18-7.38 ppm (5H, m, ArH); 13 C-NMR (CDCl $_{3}$) δ =25.14 (q, NMe), 47.66, 49.51, 49.85, 63.26 (each d), 118.66 (s, CN), 126.99, 128.45, 128.55, 136.00, 174.01 (s, CON), and 175.24 ppm (s, CON). 3: colorless prisms (acetone-hexane); mp 199-200 °C; IR (KBr) 3300, 2250, and 1690 cm $^{-1}$; 1 H-NMR (DMSO-d $_{6}$) δ =2.50 (1H, br. s, NH), 2.72 (3H, s, NMe), 3.42 (1H, t, 1 $_{6a-3a}=^{1}$ $_{6a-6}=^{7.5}$ Hz, 6a-H), 3.56 (1H, t, 1 $_{3a-4}=^{1}$ $_{3a-6a}=^{7.5}$ Hz, 3a-H), 4.22 (1H, d, 1 $_{4-3a}=^{7.5}$ Hz, 4-H), 4.32 (1H, d, 1 $_{6-6a}=^{7.5}$ Hz, 6-H), and 7.16-7.32 ppm (5H, m, ArH); 13 C-NMR (DMSO-d $_{6}$) δ =24.46 (q, NMe), 46.59, 47.85, 48.58, 62.19 (each d), 117.44 (s, CN), 127.09, 127.62, 137.62, 174.40 (s, CON), and 174.99 ppm (s, CON).